TextileMission

Mikroplastik textilen Ursprungs – Eine ganzheitliche Betrachtung: Optimierte Verfahren und Materialien, Stoffströme und Umweltverhalten

Zur Bekanntmachung Plastik in der Umwelt – Quellen, Senken, Lösungsansätze

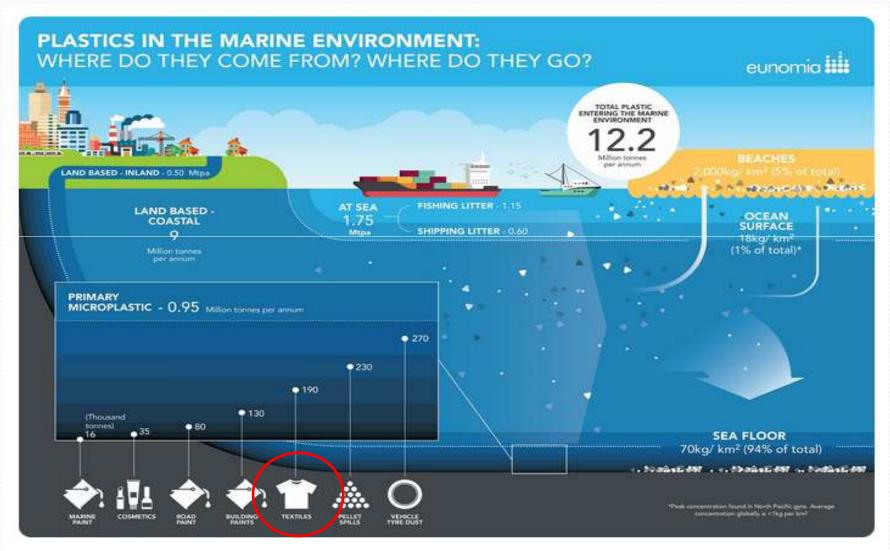
Projektpräsentation

VDI Technologiezentrum GmbH 27.01.2017, Düsseldorf

Agenda

- 1. Projektpartner
- 2. Ausgangssituation
- 3. Zielsetzung
- 4. Vorgehensweise

1. Projektpartner



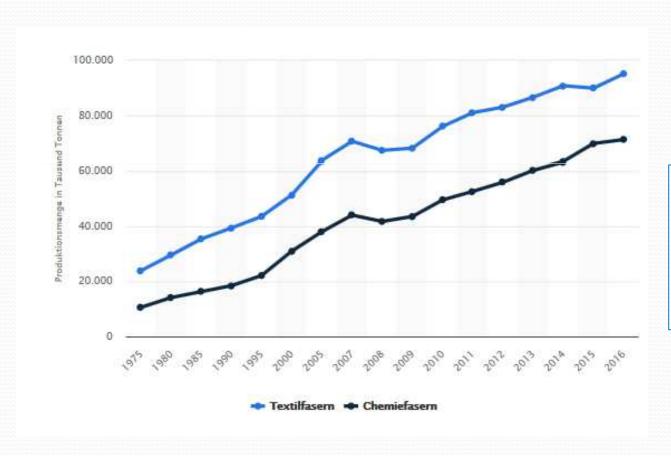
Agenda

- Projektpartner
- 2. Ausgangssituation
- 3. Zielsetzung
- 4. Vorgehensweise

1. Ausgangssituation

Eunomia: Plastics in the Marine Environment June 2016

1. Ausgangssituation



Patagonia: 100.000 Fleece-Jacken im Jahr = 11.900 Plastiktüten

- Norwegen: Ausstoß von ins.
 110 300 Tonnen Textil-Mikropartikel pro Jahr
 Oberflächengewässern (1)
- Pro Waschgang: 26 4300 mg
 Mikropartikel (2)
- Pro Kunstfaser-Kleidungsstück / Waschgang ->1.900 (3) 250.000 (4)
- Höchster Mikrofaserausstoß bei Fleece-Fasern (4)
- Mikrofaser-Freisetzung trotz 65 %
 90 % Kläranlagenfilterung (5)

1. Ausgangssituation

Weltweite Produktionsmenge von Chemie- und Textilfasern im Zeitraum von 1975 bis 2016 (in 1.000 Tonnen)

Textilfasern 2016:

95,1 Millionen Tonnen

Chemiefasern:

71,2 Millionen Tonnen

Der Konsum eines Menschen / pro Jahr beträgt 11 kg, davon 7 kg Polyester.

In den Industrienationen 30 kg/Person in den Entwicklungsländern auf ca. 3 kg.

Agenda

- Projektpartner
- 2. Ausgangssituation
- 3. Zielsetzung
- 4. Vorgehensweise

2. Zielsetzung

2. Zielsetzung

1. Stoffstromanalyse und Datensammlung:

- Ganzheitliche Betrachtung von der "Produktion über die Wäsche bis in die Kläranlage";
 Nachverfolgung des Mikropartikel-Stoffstroms
- Datensammlung und Analyse über die verschiedenen Stufen und Materialien

2. Material- und verfahrenstechnische Verbesserungen:

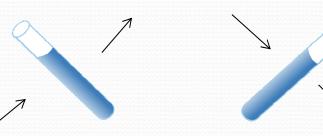
- Entwicklung von neuen Stoffen: Faserauswahl (konventionell / biologisch abbaubar),
 Flächenherstellung / Neukonfektionierung, Flächenveredelung
- Waschmaschinen: Einfluss der Waschmaschinen-Technologie / Industriewaschmaschinen
- Kläranlagentechnologie: Analyse der Kläranlagentechnologie; Optimierung
- -> Besseres Verständnis des Mikropartikeleintrags in die Umwelt
- -> Reduktion des textilbasierten Mikropartikeleintrags

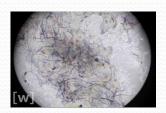
Agenda

- Projektpartner
- 2. Ausgangssituation
- 3. Zielsetzung
- 4. Vorgehensweise

3. Vorgehensweise - Forschung

Hochschule Niederrhein





TU Dresden

3. Vorgehensweise – Textil-Forschung

Hochschule Niederrhein

Chemische Industrie

Textiler Wertschöpfungskreislauf

Agrarwirtschaft

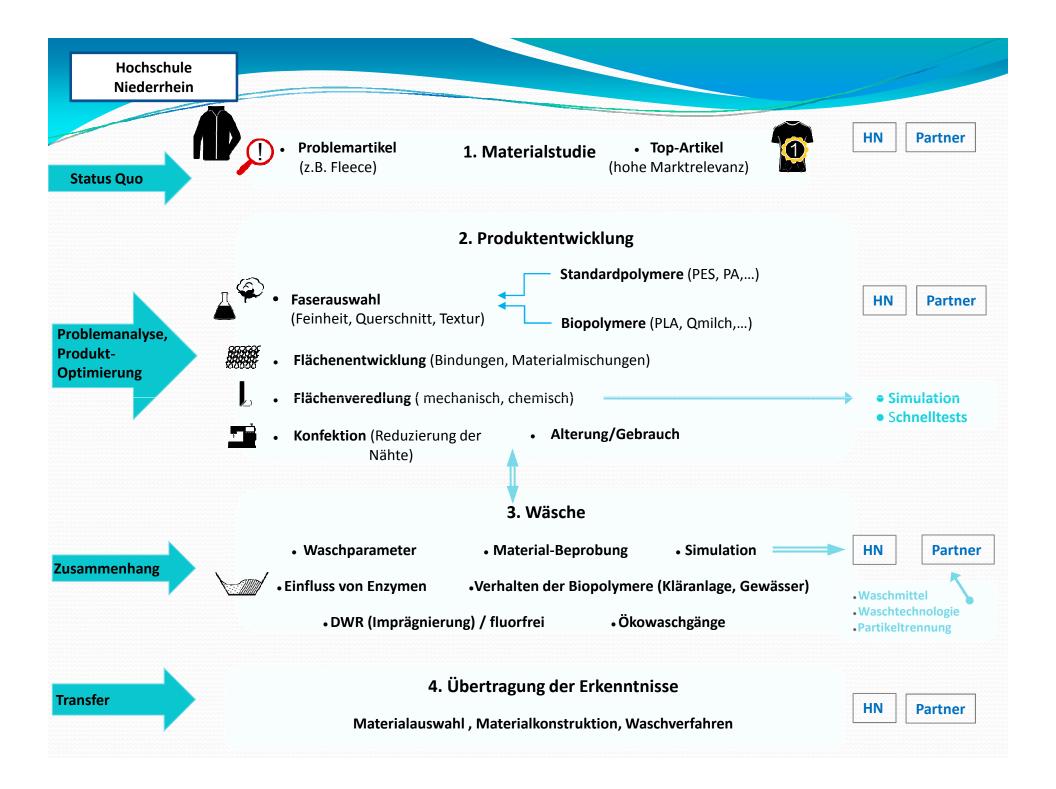
Fasererzeugung

Fadenerzeugung

Verwertung und Entsorgung

Bekleidungsindustrie

Gebrauch und Pflege



Handel / Verteilung

"textile" Problempunkte des Projekts

Übergang zur Hydroshpäre

3. Vorgehensweise - Firmen

3. Vorgehensweise – Sportartikel / Outdoorfirmen

- Produktauswahl und Bereitstellung
- Materialinformation
- Produkttests
- Abgleich mit Herstellungsverfahren in Fernost
 -> Einbeziehung der Lieferkette
- Entwicklung einer Testmethode zur Quantifizierung des Mikropartikel – Ausstoßes (in Zusammenarbeit mit der HN)

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
CATEGORY	TEST	NORMEN
FLEECE	Bursting Strength	ISO 13938-2 (50cm2)
	Pilling resistance	ISO 12945-2
	Pile Loss	ISO 12947-4
	Air permeability	JIS L1096
	Heat Retention (Rct)	DIN EN 11092
	Dimensional stability	ISO 6330-5A (4N) & ISO 5077
	Appearance after washing	ISO 6330-5A (4N) & DIN 7768
	Weight	DIN EN 12127
	Wicking	Inhouse method
	handfeel	Inhouse method

3. Vorgehensweise – Waschmaschinenhersteller

3. Vorgehensweise – Waschmaschinenhersteller

- 115 Jahre Erfahrung in innovativer
 Waschmaschinentechnik in Entwicklung,
 Konstruktion, Erprobung und Industrialisierung
 - → Beratung und Unterstützung bei der Entwicklung und Erprobung von Lösungsansätzen
- Professionelle Waschmaschinentechnik für die Vorbehandlung von Textilien
 - → Vorbehandlung mit dem Ziel der Reduzierung der Mikropartikel-Freisetzung in der Gebrauchsphase von Textilien

3. Vorgehensweise – Waschmittelhersteller

3. Vorgehensweise – Henkel

1. Beratung bei waschtechnischen Fragen der Stoffproben und der fertigen Produkte

- -> Hinweise zur Optimierung von Waschmittel->Testrezepturen
- -> Pflegehinweise für Endverbraucher

2. Beratung und Teilnahme an wissenschaftlichen "Stakeholder Workshops"

- -> Information: Mikropartikelausstoß bei der Haushaltswäsche
- -> Beratung bei der Filteroptimierung hinsichtlich der Verstopfung durch Tenside

3. Vorgehensweise – Abwasser-Forschung

Anpassung etablierter analytischer Methoden zum qualitativen und quantitativen Nachweis von Mikroplastik-Bruchstücken

- Zahl und Größe
- Repräsentative Probenahme / Screening
- Fraktionierung
- Nachweis aus komplexen Matrizes (Fluoreszenzmarkierung)

Screening der biologischen Abbaubarkeit von biopolymer-basierter Mikroplastik unter realistischen Umweltbedingungen

- Analyse und Bewertung der Persistenz der Ausgangsmaterialien
- Analyse und Bewertung der Persistenz der freigesetzten Fasern / Partikel

Simulation des Verbleibs von Mikroplastik in einer (Labor-)Kläranlage

- (Größen)abhängiger Rückhalt von Fasern/ Partikeln
- Unterschiedliche Reinigungsstufen
- Unterschiedliche Filtrationsanlagen

Toxizität von Mikroplastikfraktionen

• Akute und chronische Toxizität gegenüber Wasserflöhen und Regenwürmern

3. Vorgehensweise – Projektleitung / Kommunikation / Begleitforschung

3. Vorgehensweise – Presse- und Öffentlichkeitsarbeit

Kommunikation:

Projektwebsite

Projekt-Broschüre

Newsletter: Regelmäßige Information über das Projekt

Fachmessen:ISPO München, OutDoor spoga gafa Köln, TourNatur

Presseberichte

Fachmedien / allgemeine dt. Medienverteiler

Information verschiedener Industriebranchen

Multi-Stakeholder-Meetings: Organisation

Dialog mit der politischen und gesellschaftlichen Öffentlichkeit

Dialog mit wissenschaftlichen Institutionen

Herzlichen Dank für Ihre Aufmerksamkeit!

Wir freuen uns alle auf ein spannendes und zukunftsweisendes Projekt!

